The most important technical advance has been the replacement of electromagnetic ballasts with electronic ballasts. This has removed most of the flickering and slow starting traditionally associated with fluorescent lighting. There are two types of CFLs: integrated and non-integrated lamps. Integrated lamps combine a tube, an electronic ballast and either an Edison screw or a bayonet fitting in a single unit. These lamps allow consumers to replace incandescent lamps easily with CFLs. Integrated CFLs work well in many standard incandescent light fixtures, reducing the cost of converting to fluorescent.

Non-integrated CFLs have the ballast permanently installed in the luminaire, and only the lamp bulb is usually changed at its end of life. Since the ballasts are placed in the light fixture they are larger and last longer compared to the integrated ones, and they don't need to be replaced when the bulb reaches its end-of-life. Non-integrated CFL housings can be both more expensive and sophisticated. They have two types of tubes: a bi-pin tube designed for a conventional ballast, and a quad-pin tube designed for an electronic ballast or a conventional ballast with an external starter. A bi-pin tube contains an integrated starter which obviates the need for external heating pins but causes incompatibility with electronic ballasts. CFLs have two main components: a gas-filled tube (also called bulb or burner) and a magnetic or electronic ballast. Standard shapes of CFL tube are single-turn double helix, double-turn, triple-turn, quad-turn, circular, and butterfly. Electronic ballasts contain a small circuit board with rectifiers, a filter capacitor and usually two switching transistors connected as a high-frequency resonant series DC to AC inverter. The resulting high frequency, around 40 kHz or higher, is applied to the lamp tube. Since the resonant converter tends to stabilize lamp current (and light produced) over a range of input voltages, standard CFLs do not respond well in dimming applications and special lamps are required for dimming service. CFLs that flicker when they start have magnetic ballasts; CFLs with electronic ballasts are now much more common.

CFLs are produced for both alternating current (AC) and direct current (DC) input. DC CFLs are popular for use in recreational vehicles and off-the-grid housing. There are various aid agency led initiatives in developing countries to replace kerosene lanterns (with their associated health hazards) with DC CFLs (with car batteries and small solar panels or wind generators). CFLs can also be operated with solar powered street lights, using solar panels located on the top or sides of a pole and light fixtures that are specially wired to use the lamps.

Mercury emissions
CFLs, like all fluorescent lamps, contain small amounts of mercury as vapor inside the glass tubing. Most CFLs contain 3 – 5 mg per bulb. Because mercury is poisonous, even these small amounts are a concern for landfills and waste incinerators where the mercury from lamps may be released and contribute to air and water pollution. In the U.S., lighting manufacturer members of the National Electrical Manufacturers Association (NEMA) have voluntarily capped the amount of mercury used in CFLs. In the EU the same cap is required by the RoHS law.